Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochim Biophys Acta Biomembr ; 1862(7): 183274, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-820155

ABSTRACT

The gp41 type I membrane protein is part of the trimeric Env complex forming the spikes at the HIV surface. By interacting with cellular receptors, the Env protein complex initiates the infectious cycle of HIV. After the first contact has been established Env disassembles by shedding gp120 while the remaining gp41 undergoes a number of conformational changes which drive fusion of the cellular and the viral membranes. Here we investigated the membrane interactions and oligomerization of the two gp41 heptad repeat domains NHR and CHR. While these are thought to form a six-helix bundle in the post-fusion state little is known about their structure and role during prior fusion events. When investigated in aqueous buffer by CD and fluorescence quenching techniques the formation of NHR/CHR hetero-oligomers is detected. An equilibrium of monomers and hetero-oligomers is also observed in membrane environments. Furthermore, the partitioning to POPC or POPC/POPG 3/1 vesicles of the two domains alone or in combination has been studied. The membrane interactions were further characterized by 15N solid-state NMR spectroscopy of uniaxially oriented samples which shows that the polypeptide helices are oriented parallel to the bilayer surface. The 31P solid-state NMR spectra of the same samples are indicative of considerable disordering of the membrane packing. The data support models where NHR and CHR insert in the viral and cellular membranes, respectively, where they exhibit an active role in the membrane fusion events.


Subject(s)
HIV Envelope Protein gp41/ultrastructure , HIV Infections/genetics , HIV-1/genetics , Membrane Fusion/genetics , Cell Membrane/genetics , Cell Membrane/virology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Magnetic Resonance Spectroscopy , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Conformation
2.
Acta Pharm Sin B ; 10(7): 1163-1174, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-574770

ABSTRACT

Coronaviruses (CoVs), a family of enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, unusually large RNA genome, and unique replication capability. CoVs are known to cause various potentially lethal human respiratory infectious diseases, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the very recent coronavirus disease 2019 (COVID-19) outbreak. Unfortunately, neither drug nor vaccine has yet been approved to date to prevent and treat these diseases caused by CoVs. Therefore, effective prevention and treatment medications against human coronavirus are in urgent need. In the past decades, many natural compounds have been reported to possess multiple biological activities, including antiviral properties. In this article, we provided a comprehensive review on the natural compounds that interfere with the life cycles of SARS and MERS, and discussed their potential use for the treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL